
A Computational Framework for
Context-aware Adaptation of User Interfaces

Vivian Genaro Motti and Jean Vanderdonckt
Université catholique de Louvain, Louvain School of Management

Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
{vivian.genaromotti, jean.vanderdonckt}@uclouvain.be – Phone: +32 10 478525

Abstract— In order to address challenges posed by different

users conducting their interactive tasks on heterogeneous plat-
forms and devices in various environments, this paper provides a
computational framework to support the adaptation of the user
interface of interactive systems. This framework consists of: a
meta-model for understanding fundamental concepts required by
adaptation, a reference framework for characterizing seven di-
mensions for conducting adaptation based on the meta-model,
and a design space for consistently assessing the adaptation cov-
erage. In this way, development phases are considered with a
standard approach, a unified terminology, and an extensive cata-
log of techniques.

Keywords — context-aware adaptation, user interfaces,
computational framework

I. INTRODUCTION
 To interact with computational systems, users with different
profiles and in distinct environments employ devices ranging
from feature phones to wall displays. Environments vary con-
cerning their noise, light and stability levels, etc. Users’ pro-
files also vary significantly. Thus, there is a considerable heter-
ogeneity of contexts in which users interact [1], challenging
stakeholders during the development of information systems.
The user interfaces of such systems must be able to properly
consider particularities and constraints of each context of use to
not damage or even prevent, the user interaction. However, im-
plementing one dedicated version of each system for each situ-
ation is neither feasible nor scalable. Based on context infor-
mation [2,3], context-aware adaptation (CAA) adapts certain
properties of an interactive system in order to improve the user
interaction, initiated by the user (adaptability) and/or the sys-
tem (adaptivity or adaptiveness).

 In a scenario in which the conventional context of use, of
an able-bodied user with a desktop PC in a stable environment
is no longer valid, context-aware adaptation permits dealing
with the heterogeneity of situations in which users interact.
When the context information [2,3] is correctly considered
while implementing systems, the usability and user satisfaction
levels during interaction improve. Context-awareness is an es-
sential design requirement to create systems that are more hu-
man-centered [4]. Although the adaptation of information sys-
tems aims at higher usability levels, there are different contexts
to consider and different techniques to adapt systems’ proper-
ties, thus, correct priorities for each context information and
adaptation technique must be properly assigned.

 Many works have been dedicated to advance the adaptation
domain. Frameworks [1,4,5,6,7,8,9,10,11,12,13,14], surveys

[15,16,17], methods and techniques [18,19,20,21], principles
[22,23,24,25], and application domains [26] have already been
proposed. However, these information sources are scattered,
making it hard to find a unified source of guidance while de-
veloping interactive systems that support context-aware adapta-
tion. Moreover, technology has quickly evolved, and the frag-
mented device market is challenging for developers.

 To guide stakeholders with a unified terminology and pos-
sible approaches in this domain, we created a computational
framework for context-aware adaptation (TriPlet). TriPlet in-
cludes a meta-model, a reference framework, and a design
space. The meta-model (CAMM) consistently defines related
concepts, properties and relationships, establishing a common
ground for implementing adaptation. The reference framework
(CARF) presents alternatives for adapting systems, i.e. how to
do it, when, and why. The design space (CADS) is an analyti-
cal instrument to assess and to compare adaptation levels of
different applications based on unified criteria.

 This paper is organized as follows: Section 2 motivates this
research, presents and discusses related works, Section 3 de-
tails the computational framework and its components, Section
4 applies the results and Section 5 concludes this work.

II. STATE OF THE ART
The variety of computational devices [1], summed with

their consequent pervasiveness, mobility, and ubiquity [4]
challenges the development of interactive systems [27]. Main-
ly because, it is hard to correctly identify relevant information
coming from varied contexts in which users interact. Moreo-
ver, each context can dynamically vary, forcing user interfaces
to be accordingly adapted accommodating specific character-
istics and constraints of each context. Context-aware adapta-
tion raises as a solution to prevent stakeholders from creating
dedicated versions of the same system for each context’s par-
ticularity. To better identify and consider context information
and to properly execute adaptation, many studies have been
performed, significantly advancing the development and the
research in this field. Theoretical frameworks, surveys, appli-
cations domains, adaptation techniques, methods, strategies,
approaches and principles have been defined and investigated
since the early 90’s. Such studies proved that multiple do-
mains can actually benefit from adaptation. This section pre-
sents a selection of works that focus on meta-models, frame-
works and design spaces for CAA, mainly because these con-
cepts are the basis for TriPlet components, providing a com-
mon ground and inspiration for them.

A. Meta-models
Models abstract system concepts, their properties and rela-

tionships. In the CAA domain, models have been used to rep-
resent: context information, adaptation rules, and multimodal
properties. [6,23,28,29] cover adaptation rules, [23] focusing
on plasticity, and [30] targets at mobile devices.

In Munich Reference Model [31] defines techniques for
designing adaptive hypermedia applications. The domain
model requires a conceptual design of the problem domain,
which evolves into a navigation and presentation model. The
user model defines attributes and relationships with the do-
main model. The adaptation model specifies domain and user
elements, the set of acquiring and adaptation rules and their
collaborations.

In ADAPTS [19] explicitly models task, domain and users,
in an integrated manner to support adaptation based on the
context. A diagnostic engine employs user and expert models
to update the navigation, selecting the most appropriate tasks
for the user based on pre-defined weights.

For Context Information [32] provides a meta model to de-
fine context information and its associations. The main con-
cepts considered include: devices, persons, and their proper-
ties, (mobile phone, phone number, gender, etc.) and their re-
lationships, (is located nearby, has phone number, etc.).

For Rules [23] states that an adaptation model specifies the
evolution and transition rules applied in context’s changes.
Their adaptation models define tasks, abstract, concrete, final
UIs and widgets extensions, plasticity is seen as the main prin-
ciple. They remark the benefits of using model-based ap-
proaches to implement CAA, and emphasize the adoption of
principles, as: plasticity and continuity.

For Mobile Applications [30] defines a MOF-based model
for context-aware mobile applications. The concepts consid-
ered are abstract including: classifier, attribute, entity, content,
association, dependency, constraint and group.

The Adaptation Rules meta-model of [28] defines adapta-
tion rules and targets at plasticity as the goal for ubiquitous
applications. It aids designers to take decisions and implement
CAA considering three phases: context perception, reaction,
and learning. The rules respect the ECA structure (i.e., on
event if condition do action). After the adaptation is defined,
the users are able to request, accept or reject it.

The Adaptation Rules of [6] defines in a meta-model basic
concepts, of adaptation rules as: precondition, event, sensor,
data, transformation and rules.

The Context of Use is covered in [33] with generic model
created for Morfeo project, defining element, property, entity,
aspect, component, characteristic, environment and user.

Table 1 summarizes the works presented above and high-
lights their goals. They can be broadly organized in two
groups: while [6,23 and 28] focus on rules, [32 and 33] focus
on context. More specifically [19] focuses on user models and
[30] targets at mobile devices. Such works are relevant to de-
fine essential concepts for adaptation; however by being spe-
cialized they provide a narrowed view of the adaptation pro-
cess, i.e. by focusing in one specific part of the process, a
global definition is still missing.

Table 1. Meta-models for Context-aware Adaptation and their main goals

!"#$%!&'"() !$*+),&-./)
!.+*-0) 1"2"3"+-")
!&'"()4567)

!"#$%&'(#)"%*+$#,#$#-.#"/%01"2"/%3'1)"/%#4+#$5#-.#6%
,'$%1(1+0105'-/%5-.)7(#"%1)"'%$7)#"%

898:;<))
46=7)

81"2/% ('&15-% 1-(% 7"#$"9% 81"2"% 1$#% 0:#-% "#)#.0#(%
;1"#(%'-%0:#%7"#$%&'(#)9%

>&+#"?#) @+2&3A$#*&+)
45B7)

<#,5-#"% $7)#"/% .'-0#40% 5-% 0#$&"% ',% (#=5.#% 1-(% +#$>
"'-/%?71)50@%1-(%1""'.5105'-"/%%

1.("/))
4B57)

A=')705'-% 1-(% 0$1-"505'-% $7)#"% ;1"#(% '-% .'-0#40B"%
.:1-3#"9%CD!E%1-(%+)1"05.50@%1$#%.'-"5(#$#(%0''9%%

!&C*(")45D7) F'-0#40>1G1$#%&';5)#%1++)5.105'-"9%
1.("/)4BE7) H(1+0105'-%$7)#"%,'$%7;5?750'7"%.'&+705-39%
1.("/)4F7) I7)#"%5-%0#$&"%',%.'-(505'-"%1-(%0$1-",'$&105'-"%
!G1,HG)4557) F'-0#40>1G1$#-#""%1-(%0:#%7"#$"B%+$',5)#9%

B. Frameworks
Because there is no unique definition of framework, the

ones that have been reported in the literature so far include,
application toolkits [2,34], architectural approaches [1,9,35,
36], conceptual definitions [4], logics [8,37], etc. Thus often,
they complement or specialize each other, making it hard to
consistently analyze and compare them. This section summa-
rizes existing frameworks that support CAA.

A Framework for Adaptable Hypermedia Documents
(FAHD) [38] works on interchange formats and languages to
provide adaptation techniques (for layout, style, links and syn-
chronization). The context considered includes platforms, user
characteristics and preferences. A generic model and standards
aid the transformations to multiple formats and target presen-
tations based on one source document. This framework sup-
ports automatic processing of hypermedia documents to form
presentations, building upon text-based standards, to transform
structured documents. Presentation’s specifications can be
recorded in style sheets, and are broad enough to cover many
hypermedia document sets.

Conceptual Framework for Adaptive Web Sites (CFAWS)
[39] focus on the user model, navigation, and user views to
adapt pages. While the user model aids to customize pages,
the navigation is adapted based on the visit sequences. This
work improves navigation by making it more efficient.

Context-aware frameworks and toolkits (CaFT) [2] de-
fined ‘context information’ as relevant concepts that character-
ize the user’s context. They defined requirements for imple-
menting context-aware systems, and created a framework that
eases their implementations [3].

Personal Universal Controller (PUC) [36] creates an ar-
chitectural framework composed of: appliance adaptors,
communication protocol, specification language and interface
generators. It controls real appliances and uses decision trees
to render user interfaces in varied modalities. It enables users
to control any appliance within their environment. The UI is
automatically generated. The description of the appliance’s
functions is used as input. With user studies they noted that
users preferred automatically generated UIs (instead of the
manufacturer’s UIs of the actual appliances).

W3C Multimodal Interaction Framework [35] presents a
general architecture, involving major components and their
respective functions for multimodal systems. Modalities in-

clude: speech, handwriting, keyboard and mouse. Considered
languages: XHTML, SVG, SMIL and HTML. Input modes
(recognition, interpretation and integration) and output modes
(rendering, styling and generation) are considered. Use cases
illustrate instantiations of this work.

A Framework for Adaptive Educational Hypermedia Sys-
tems (AEHS) [40] defines a framework with 8 components. It
gathers the context (information on learners’ behavior), cre-
ates a domain model (learning theory), its sub-models (with
main topics and sub-topics), a learning model (to define the
instructional design theory), a hyperbase sub-model (with a
meta-data library of learning objects, as exercises and presen-
tation), the learner model (with the learners’ characteristics
and how to adapt to them), a decision model (specifying
presentation and navigation changes), and presentation genera-
tors (generating adaptation results).

FAÇADE [18] bridges the gap between Internet contents
and heterogeneous computing environments by delivering web
contents to mobile users. Context information captures the de-
vice’s constraints and connection, and user preferences. A dis-
tributed architecture separates context processing from content
adaptation for ensuring flexibility and extensibility.

SUPPLE [34] is a framework-toolkit that treats UI genera-
tion as an optimization problem. It considers device’s con-
straints and users’ efforts. Its uses declarative descriptions of a
UI, device characteristics, widgets, and a user and device cost
function. For [34] an adaptive UI requires 3 inputs: the UI
specification, a device model and a user model. SUPPLE in-
cludes as input a trace of typical user behaviour, enabling us-
er-specific renderings.

ResOurce-aware Application Migration (ROAM) [12] is an
application framework that assists developers in implementing
applications to run in multiple devices, and that enables users
to migrate applications across devices without much efforts.
ROAM follows as adaptation strategies: transformations, dy-
namic instantiation and offloading computation. Agents sup-
port the migration. ROAM considers as context information
just device properties, as: display size, input method and user
interface library.

XUL-based Interface Framework (XIF) [37] separates the
UI adaptation from the logic to ease the development of mo-
bile apps, assuring more portability for Java ME settings.

PersonisAD [10] is an architectural framework to model
and use context. Its key concern is scrutability, i.e. the users
can access and understand their models using operations as
access, tell, ask. Their main contribution is a generalized
framework to simplify the creation of ubiquitous computing
applications; they focused on modeling the environment and
on the distributed and active nature of the models.

Architectural Framework for Automated Content Adapta-
tion to Mobile Devices (ACAMD) [9] considers as basic re-
quirements for adaptation frameworks: transforming images
and identifying the delivery context. Aiming at cost-efficient
development of mobile applications, they provide a markup
language and an integrated development environment (IDE).
ACAMD supports: navigation, organization, image conver-
sion, data integration, fragmentation, layout and style.

Context-Aware Workflow Execution Conceptual Frame-
work (CAWE) [7,8] enhances the flexibility of the workflow in
web service composition systems by explicitly representing
context information and adaptation rules in the adaptation log-
ic. CAWE manages context-aware applications by hierarchi-
cally representing the workflow, it supports the execution of
alternative actions’ courses and the context-aware invocation
of web services. It considers the UI adaptation and the work-
flow execution, and it can be extended to handle complex ad-
aptation rules.

MIMOSA [1] focuses in mobile users and web-based ser-
vices. This framework includes an architecture and a middle-
ware to aggregate context from distributed sources. By cou-
pling services the user preferences are detected and considered
to choose appropriate adaptation policies.

Less Framework (LF) [5] is an adaptive CSS grid system
for designing adaptive websites. Four layouts with 3 sets of
typographic presets are available, all based on a single grid.
The layouts consider the platforms, e.g.: a default one (of 992
pixels, for desktops, laptops, and tablets in landscape orienta-
tion), a tablet one, mobile devices, and wide mobile one (for
large mobile devices or landscape-oriented smartphones). The
layouts vary their columns and margins.

Conceptual Framework (CF) [4] defines a multidimen-
sional framework for context-aware systems. Context aware-
ness is a multidimensional goal whose further features, as ad-
aptation, are needed to exploit contexts’ full potentials. This
work discusses the CAA pitfalls, challenges and trade-offs.

Table 2 presents the frameworks analyzed based on the
context of use that they target (user, platform or environment),
their main contributions (architecture, algorithms, models,
toolkit, etc.) and the main aspect subject to adaptation (presen-
tation, navigation and content). The dimensions were classi-
fied based on their impact, e.g. when several contextual in-
formation are considered, they were classified as ‘+++’, and
when few information were (partially) taken into account, it
was classified as ‘+’. When no information belonging to the
dimension was considered, it is classified as ‘-’. As also point-
ed by [1], context information must be broadly considered,
however as we can see in this table, most of the frameworks
on CAA partially consider the context, i.e. rarely user, plat-
form and environment are simultaneously taken into account
[3,7,8,1]. Still when the context is considered, the contextual
information concerning the platform is prioritized instead of
the user [36,35]. Moreover, as points [9] the adaptation
frameworks’ complexity leads to rejections of adaptation
methods offered.

3) Design Spaces for Adaptation
Design Spaces define possible alternatives for developing

applications regarding multiple dimensions. With an explicit
representation of these options, a Design Space can be used
before the implementation of a project, to present design’s op-
tions, after the implementation to analyze and explore the al-
ternatives and also to compare different projects. [41] defines
a design space for multimodal systems. When different modal-
ities, as voice, gesture and textual are integrated, the user I/O
in different times may vary.

Table 2. Current frameworks according to their: contextual dimensions (user,
platform and environment), support provided and aspects (presentation, navi-

gation and content). From – non-existing, + low, ++ middle, to +++ high.

1"($#"')
I&3J/)

>&+#"?#) <.KK&3#) 8/K"-#)
!"#$% &'()% *+,% -./#% &$#"% 0(,% 12+%

,8L9)
45E7) J% J% >% K$1&#G'$2/%

H$.:50#.07$1)%K'$&"% J% >% J%

>,8I<)
45=7) JJJ% >% >% H)3'$50:&/%C#0:'("% >% JJ% >%

>$,;)457) JJJ% JJJ% JJJ% F'-.#+071)%K$1&#G'$2/%
8'')250% J% >% J%

:M>)45FN) >% JJ% >%
H$.:50#.07$#/%

L+#.5,5.105'-/%M1-3713#/%
!E%N#-#$10'$%

JJ% >% >%

I5>)45O7) J% JJ% J%
N#-#$5.%C#01>
H$.:50#.07$#% JJ% J% J%

8HL<)4PD7) JJJ% >% >% <#.5"5'-%C'(#)"/%H-1)@>
"5"/%L0$10#35#"/% JJ% JJJ% J%

,8Q89H)
46E7) J% JJJ% >%

H$.:50#.07$#/%<#.5"5'-%
A-35-#/%F'-0#40%I#+'"5>

0'$@%
JJ% JJ% JJ%

<M::RH)
45P7) J% JJ% >% K$1&#G'$2>8'')250% JJ% J% >%

1G8!)
46B7) >% JJJ% >% L@"0#&/%H++)5.105'-%

K$1&#G'$2% JJ% J% >%

S@,)45T7) >% JJJ% J% M'35.1)%H++$'1.:/%%O!M>
;1"#(%!E%K$1&#G'$2%

JJJ% >% >%

:"3/&+*/)
89)46D7) J% J% J%

I7)#%M1-3713#/%N#-#$1)>
5P#(%H$.:50#.07$1)%

K$1&#G'$2%
JJ% >% JJ%

8>8!9)
4=7) J% JJJ% J% E<A/%H$.:50#.07$#% JJ% JJ% JJJ%

>8IH)
4TUE7) JJJ% JJ% J% K$1&#G'$2/%H$.:50#.>

07$#/%M'35.%
JJ% JJ% J%

!@!G<8)
467) JJ% JJJ% J%

H$.:50#.07$#/%<5"0$5;70#(%
K$1&#G'$2% JJ% JJ% JJJ%

R,)4O7) >% JJJ% >% M1@'70%Q+05'-"% JJJ% >% >%

>,)4P7) JJJ% J% JJ% F'-.#+071)%K$1&#G'$2% JJJ% JJJ% JJJ%

 The design space deals with tasks at the granularity of
commands, aims at identifying software implications and con-
straints during its development phases, and it enables classifi-
cation. It considers concurrency and data fusion, and it in-
cludes as dimensions: modalities (sequential, and parallel),
fusion (combined, independent) and abstraction level (mean-
ing and no meaning). This classification space defines 4 clas-
ses of system for reference, characterization and reasoning
concerning I/O properties of interactive systems. It enables to
locate systems and to consistently compare them, being com-
plemented by a software architecture.

[42] defines an adaptivity design space, as a set of pairs
with temporal aspects and priorities assigned. This space char-
acterizes adaptation based on determinants, constituents, goals
and rules, it customizes requirements for different domains
and user profiles, and attends to a generic-purpose. They or-
ganize adaptation’s strategies in 4 main decisions: what to
adapt (constituents), when to adapt (determinants, or UI
states), why to adapt (goals) and how to adapt (rules).

[43] creates a design space for context-aware UIs. Contain-
ing adaptivity, adaptability, and context-awareness, axis in-
cluding the target (‘with respect to what’), aspects (‘what’),

qualities (‘for what’), agents (‘who’), amount (‘how many’),
temporality (‘when’), and approach adopted (‘with what’),
such a design space encompasses seven relevant dimensions
for context-awareness [43]. Such design space proposes a new
method for developing context-aware UIs. It aids designers to
locate, identify and separate events that change context and
thus reconfigure the UIs.

[34] proposes a design space for adaptive graphical user
interfaces, analyzing aspects that affect the success of an adap-
tive UI. The associations among performance, accuracy, user
satisfaction, cognitive complexity, adaptation’s frequency and
predictability were explored. As a result they noted that me-
chanical properties of an adaptive UI does not strongly affect
the user’s satisfaction or performance. Moreover users tend to
prefer the UIs’ spatial stability. They also believe that frequent
adaptations may reduce the utility of adaptive UIs.

[22] presents a dimension space that enables classification,
comparison and contrasting different works on meta-UIs. Di-
mensions encompassed include: interaction techniques (inte-
gration, extensibility, representation, function) qualities (ini-
tiative and control) and functional coverages (services and ob-
ject types). For each dimension, granularity levels have been
defined, e.g. either the human or the system can take the initia-
tive. The dimensions’ levels are not necessarily exclusive or
scalar. For [22] models and mechanisms are currently being
developed for plastic and context-aware adaptive UI’s. How-
ever care must be taken to ensure that end users have enough
UI control.

For [44] the design space for adaptation includes as dimen-
sions: target, means, and time. The target for adaptation refers
to entities for which adaptation is intended: adaptation to us-
ers, adaptation to the environment and adaptation to the plat-
form (i.e. physical devices and their characteristic). The means
for adaptation denotes the software components of the system
involved in adaptation. For instance, the system task model,
the rendering techniques and the help subsystems can be mod-
ified to adapt to the targeted entities. Finally, the temporal di-
mension of adaptation refers to static adaptation (effective be-
tween sessions) or dynamic (at run time).

[45] focuses on the gap between interactive features of
displays and adaptation rules for contents. For them the fluidi-
ty and heterogeneity of social contexts must be considered,
adapting the UIs’ design decisions. The user activity must be
traced and used for the adaptation. The key problem is the di-
versity of interaction modalities and adaptation rules. So a de-
sign space informs designers of situated displays the relation
among interaction modes, types of digital footprints they can
generate and the adaptation they may support. Interaction op-
tions were analyzed and digital footprints categorized in: pres-
ence, presence self-exposure, content suggestion and actiona-
bles, defining the mapping between interaction options and
generation of local digital footprints. Adaptation types were
analyzed and linked with each digital footprint.

Table 3 presents the works on design space based on their
dimensions and granularity levels. Dimensions include dis-
crete and continuous values, and their levels not always repre-
sent a scalar relationship, although often they are represented

in continuous axes. Analogous to the frameworks reported, the
design spaces are also dedicated to specific CAA aspects.
While [45] tackles interactive displays, and [41] multimodal
applications, [44] focuses on user experiences. All dimensions
involved with these scenarios are relevant, but a global view
of a CAA design space is still missing.

C. Shortcomings
Advancing specific adaptation topics in depth is important,

but stakeholders lack a unified source in which they can rely to
implement adaptation [46]. The main shortcoming in this do-
main is the lack of a unified approach for stakeholders, a stand-
ard terminology, and a common methodology. Once the infor-
mation sources are scattered, developers either ignore adapta-
tion [1], in a fast and often inaccessible solution, or spend sig-
nificant efforts to look for and find information. Today various
works must be analyzed to find right solutions for each case,
requiring significant efforts and causing incompatible results.
The definition of the TriPlet computational framework was in-
spired on works about CAA (models, languages, frameworks
and softwares). Models are essential to define relevant concepts
for CAA, and frameworks support CAA different phases, e.g.
design, implementation and evaluation. The contributions of
this work inherited a lot from works reported in this section,
and TriPlet attempts to both: integrate and extend them. The
solution described in this paper is innovative by presenting a
computational framework that supports the software develop-
ment life cycle in the incorporation of context-aware adapta-
tion. TriPlet is also flexible and extensible. The concerns and
shortcomings observed for CAA delineate the problem space
for this work, and also lead to conclude requirements and im-
provements in this domain considering different dimensions.

III. TRIPLET: A COMPUTATIONAL FRAMEWORK FOR
CONTEXT-AWARE ADAPTATION

A framework is formally defined as a reusable, semi-
complete structure that when specialized produces custom ap-
plications. It includes components extensible for specific do-
mains. Frameworks are a proposition, which, if properly de-
signed, reduce investments and development costs [9]. For
[11], frameworks for context-aware computing ease the devel-
opment and deployment of context-aware applications because
stakeholders can focus on tasks that are more specific for their
application, while relying on a basic structure to handle, man-
age and distribute information. A framework aids to create ex-
plicit structures, which can be made complete and comprehen-
sive by repeated investigations over time. It also contributes to
establish design guidelines and with a consistent terminology
for sharing and describing results [47].

 This section presents TriPlet and its development steps.
First the literature was reviewed and adaptation concepts, as
techniques, were systematically extracted. Then, TriPlet’s
components were created based on the analysis of the results of
the systematic review. Fundamental concepts commonly found
in adaptive and adaptable applications served as a ground for
creating the meta-model, the techniques identified for adapta-
tion were systematically organized in cards, and lead to CARF
definition, i.e. not only adaptation techniques are needed to ex-
ecute adaptation, so its principles, strategies and approaches
were also considered. Finally, the design space with essential
dimensions for analyzing and comparing multiple adaptability
levels of CAA was defined.

A. Context-aware Meta-model
To formalize concepts for the CAA development, based on

the results of the literature review, a context-aware meta-
model was created (Figure 1). This model, named CAMM,
uses the OMG notation for UML Class diagrams, being asso-
ciations presented by named lines (e.g., triggers), aggregations
presented by open diamonds (e.g., resource property), and
compositions presented by closed diamonds (e.g., User).
CAMM covers the complete adaptation process; it abstracts
necessary concepts, establishes their relationships and defines
their properties. Moreover, further information, as constraints
and relations’ cardinality are also specified.

Four colours are applied in the meta-model to separate
concepts based on their specific domains. Thus, the classes
represented in red refer to the adaptation agents, the green
ones refer to the context of use, the yellow ones refer to the
core of the adaptation process, and purple ones to the model
generation.

This Meta-Object Facility (MOF) based meta model dia-
gram illustrates with the red blocks possible agents to trigger
an adaptation process: the system, the user or a third party, ab-
stracted as ‘Adapter’. Considering the several phases of an ad-
aptation process, each agent can be responsible for each phase
[24]. E.g., the end user starts the adaptation, and the system
decides the best method among the ones available. Besides,
the agent roles can be further refined based on their specific
characteristics and interrelationships, supporting collaboration
and hierarchies.

Table 3. Existing design spaces, their dimensions and levels

9"/*V+)<K$-"/) 9*A"+/*&+/)W("X"(/Y)/$AK("N)

Z*V$[) $+')
>&.#$\)4P67)

C'(1)505#"%*"#?7#-051)/%+1$1))#)6%
K7"5'-%*.'&;5-#(/%5-(#+#-(#-06%
H;"0$1.05'-%*-5-3/%-'%-5-36%

]3V*$++*'*/)
4PB7)

R:10S.'-"0507#-0"%*"#&1-05."/%"@-0105."/%)#45.6%
R:#-S(#0#$&5-1-0"%*!EB"%"010#"6%
R:@S3'1)"%
T'GS$7)#"%

<@!@R81)9<)
4P57)

8'%G:10%*01"2/%('&15-/%7"#$/%+)10,'$&/%#-=5$'-&#-06%
R:'%*"@"0#&/%&54#(/%7"#$6%
R:#-%*$7->05&#/%(#"53->05%
T'G%&1-@%%*'-#/%"'&#/%&1-@6%
R:10%*1++)5.105'-/%+$#"#-0105'-6%
R50:%G:10%*+1""5=#%&'(#)"/%1.05=#%&'(#)"6%
K'$%G:10%*5-505105=#/%+$'+'"1)6%

^$_&/)"#)$(`)
45P7)

F'"0"%4%D#-#,50"%*)'G/%&'(#$10#/%:53:6%
K$#?7#-.@%4%U$#(5.01;5)50@%*)#""/%&'"06%
U#$,'$&1-.#%4%L105",1.05'-%

>&.#$\)
4BB7)

8#.:-5?7#%*#40#-"5;5)50@/%(#"53-/%$#+$#"#-0105'-/%5->
0#3$105'-6%
V71)50@%*5-505105=#/%.'-0$')6%
K7-.05'-%*';W#.0%0@+#"/%3#-#$5.%"#$=5.#"6%

830*KK$*+"+)
4PP7)

81$3#0%*7"#$/%#-=5$'-&#-0/%+)10,'$&6%
C#1-"%*-1=53105'-/%.'-0#-0/%+$#"#-0105'-6%
85&#%*"0105./%(@-1&5.S$7->05%

>$3'&/&) $+')
a&/b)4PO7)

U$#"#-.#%*(#0#.05'-/%.:1$1.0#$5P105'-/%5(#-05,5.105'-/%
#4+'"7$#6%
F'-0#-0%L733#"05'-%
H.05'-1;)#"%

Figure 2. CARF: Context-aware Reference Framework

A CAA process can also be triggered by a change in the
context of use. The green blocks in the meta-model diagram
represent concepts related to the context information. The con-
text defines adaptation rules by providing information to in-
stantiate them. When the user changes the orientation of the
device, a technique like ‘change the UI orientation’ must be
applied, rotating the UI contents based on the new position of
the device (information possibly gathered by a sensor).

As the context consists of information gathered from dif-
ferent dimensions, there are sets of rules that can be simulta-
neously applied. An adaptation process is then governed by
one or more rules. Rules, represented in the meta model dia-
gram by the yellow blocks, can be syntactically structured in
the form of ECA rules (event, condition and actions) [48], in-
stantiated and triggered by context information. More than one
rule is normally applied simultaneously, so conflicts may ap-
pear and adaptation must be progressively processed [46]. To
solve them, priorities must be assigned for certain contexts:
adaptation techniques may be composed as policies (meta-
rules) that can also be composed as strategies (meta meta-
rules). An extension of ECA rules that includes also Justifica-
tion can be applied too.

CAA results can be presented to the end user with different
methods, preventing the end user disruption, commonly
caused by significant differences between the original and the
adapted UI. Animation is one method that can be applied in
this sense. By using animation, the intermediary steps of a
transition are explicitly presented to the end user, for a more
intuitive comprehension of sequential changes [49].
 Rules actions generate models for SFE. In CAMM, models
are presented by purple blocks, and based on principles of the
model driven approach, they range from task and concept level,
abstract level, to concrete and final level [13]. While a task
model specifies tasks and subtasks involved in accomplishing a

user goal, the final UI level defines the layout (e.g. for GUIs):
style, alignment, and colours.

B. Context-aware Reference Framework
The Context-aware Reference Framework (CARF) is a

reference framework that lists the most relevant concepts for
implementing and executing CAA. The CARF, whose center
is illustrated in Figure 2, is graphically represented by a mind
map and composed by seven central branches. While these
central branches (i.e., the ones directly connected to the root)
present abstract concepts, the more external ones (added under
the central ones) list possible instances for these abstract con-
cepts, aiding the implementation, execution and analysis of
CAA. To instantiate the CARF the following sentence must be
appropriately respected and filled: At <when>, concerning
<to_what>, the <who> <where> must <how> the <what> to
improve the <why>. In natural language, e.g. it could mean: at
run time concerning the user age the system client must sim-
plify the textual content to improve (or assure) its accessibil-
ity. The seven central branches of the CARF refer to, in
clockwise sense: what, why, how, to what, who, when, and
where dimensions, being defined as follows:
• What: the type of resource or aspect that is adapted, includ-

ing three main categories [19,42,43,44]: navigational flow,
presentation or content. E.g.: images or text;

• Why: the main adaptation goals, expressed as software
qualities [34,23,50,51]. E.g.: adaptation performed targeting
at better usability levels;

• How: in which way the adaptation is performed, methods,
techniques and strategies for the adaptation [42,51]. E.g.,
technique of changing the video quality (see Figure 3);

• To what: contextual information to justify and define the
adaptation, i.e., application resources subject to adaptation

Figure 1. CAMM: Context-aware Meta Model

Figure 3. Cards for describing Adaptation Techniques

Figure 2. CARF: Context-aware Reference Framework

based mainly in user, platform, or environment. E.g.: adapt-
ing to color-blind users [2,3,27,51,52];

• Who: refers to the actor who triggers, initiates or is in
charge of each phase of the adaptation, e.g.: the end user,
the system, or a third party. In a mixed approach both users
and system collaborate in the adaptation [6,43,51];

• When: the state in which the adaptation process is per-
formed, i.e., design time, run time, compilation time. E.g.:
adaptation performed at run time [6,28,42,43,44];

• Where: the ‘location’ in which the adaptation takes place,
i.e., based on the architecture adopted it can be at the client,
at the proxy, or at the server [6,51]. E.g.: adaptation per-
formed at the server side.

While adapting the resources and their properties, an inter-
active system is modified, by including, editing, removing, or
simplifying them being such changes named as adaptation
techniques. With a literature review, more than 150 different
techniques were catalogued1. They are organized as cards with
detailed information: references, definitions, benefits, context,
etc. These cards (see Figure 3 example) guide stakeholders
while retrieving specific information about adaptation, e.g.
concerning all adaptation techniques for small screen devices
and color-blind users. Adaptation techniques are the ‘brick’ of
an adaptation process being thus the atomic unit that when
combined result in a whole adaptation process. To compose a
complete adaptation process further concepts are also needed.

The seven branches of CARF compose its core, and by add-
ing new instances they can be refined, however they should not
be extended with additional branches (once these concepts
were already selected as the most essential for characterizing
this domain, being them sufficient to comprise and express all
necessary phases of a CAA process). The CARF defines the
most relevant concepts for CAA and extensively lists and pre-
sents possibilities for implementation and execution. CARF
can be used before the implementation phase of an application,
as an extensive catalogue to guide developers to take design
decisions, or after the implementation of an application, to ana-
lyze and evaluate concepts that were considered, identifying
underexplored areas in which future extensions are possible.

C. Context-Aware Design Space
Design Spaces (DS) guide stakeholders to take better deci-

sions during a project, aiding to select relevant aspects based
on projects’ goals. Besides this, with a later analysis stake-
holders can assess and extend a project development. During
the development life cycle, stakeholders can also use a DS to
update project requirements and to identify possible alterna-

1
%H0X%:00+XSS05-@9..S4@#Y7G

tives. A DS helps to communicate design decisions by ena-
bling their documentation, their future reviews (verify the fea-
tures available), and also to compare applications.

The main challenge for defining Design Spaces is selecting
precisely descriptive dimensions for most of the applications,
and significant granularity levels, to accommodate all possible
decision, assuring still enough legibility to locate and identify
them, and being as much extensive and precise as possible.

The Context-aware Design Space (CADS) (Figure 4) is a
theoretical method to supports stakeholders in implementation
phases, and in the analysis and evaluation of adaptive and
adaptable applications. The CADS aids developers before and
after the implementation phases. Before it, CADS aids to iden-
tify possible dimensions and granularity levels for performing
adaptation, and after it CADS aids to analyze, evaluate and
compare these dimensions regarding their respective coverage
levels. Thus the CADS supports the analysis and the compari-
son of different applications that execute adaptation and during
their complete development life cycle. It has been built in an
iterative manner. First, relevant dimensions of CAA were iden-
tified based on the literature review. Then the specific granular-
ity levels for each dimension were defined. In a first version of
the diagram, because not all dimensions represent ordered val-
ues, the diagram was misinterpreted. As a result, CADS was
split. Dimensions that are unordered belong to the CARF (e.g.
context information). Solely dimensions that are ordered were
kept, e.g. the applicability level for CAA (ranging from the en-
tire application, to specific properties of the UI elements).

As a radar chart, the CADS is a useful approach to repre-
sent multi variable observations with an arbitrary number of
variables. Although, in principle this representation is used for
ordinal measurements, in the CADS, qualitative values are rep-
resented with their respective empirical scale associated. The
CADS considers the benefits towards the virtues proposed by
[53] for design spaces, being thus comparative since multiple
applications can be analyzed based on the same criteria; ex-
ploratory, since each dimension can be analyzed in terms of
exploration, i.e., identifying further opportunities for exten-
sions; and descriptive, since each dimension is precisely de-
fined, consistently and uniquely. CADS is extensible, once its
dimensions can be added or refined and flexible, once they can
also be removed or added enabling focused analyses.

Clearly, the interpretation of scales for the dimensions cho-
sen can vary based on the context. However, it is a general in-
terpretation that is assumed for CADS. Once the concepts can-
not (in principle) be numerically assessed and compared, their
semantic meanings and interpretations must be considered. The
proportions are also empirically associated with the dimen-
sions, since no formal experiments were conducted so far to
identify actual metrics for each dimension and its granularity
levels. For each case of CADS application, its use must be de-
fined and discussed. All CADS dimensions, although com-
prised in the same representation, are still independent, and
thus concentric circles while aid the visual comparison of dif-
ferent granularity levels, do not necessarily represent same
coverage levels between different dimensions.

The central circle of the CADS, colored in red, represents
the absence of adaptation features, e.g. when no adaptation
process is performed an application can be classified as de-
signed based on its autonomy level. For each subsequent circle
an additional coverage level of adaptation can be considered
added, and more external levels represent higher coverages
based on one adaptation dimension. So, supposing an applica-
tion able to adapt for varied modalities (multi), it can be classi-
fied as having a higher coverage level of adaptation regarding
the modality dimension if compared with another application
that performs adaptation just within the same modality type
(intra). A higher coverage level of adaptation regarding one
specific dimension does not immediately imply a higher level
of usability or a better application for the end users though.
Implementing adaptation imposes many trade-offs (e.g., adapt-
ing an application may negatively affect its performance or ac-
cessibility level), and thus only by carefully planning and per-
forming evaluation sessions, the actual benefits of adaptation
for end users can be known.

The current version of the CADS results from the continu-
ous iteration of evaluation and improvements, and thus while it
maintained the benefits of its previous version, it discarded po-
tential issues that could lead to misunderstandings. This section
explains the characteristics of the CADS, highlights its ad-
vantages and discusses its weaknesses. As mentioned above,

the CADS diagram is extensible and flexible, and thus dimen-
sions can be removed, inserted, or refined. Below there is a list
of the dimensions included in the complete CADS. Clearly, for
more focused analyses, a specific set of these dimensions can
be selected. On the other hand, for broader analysis it is also
possible to include and consider further dimensions and granu-
larity levels. The dimensions described below present the basic
structure for the CADS. The scales’ sizes for each dimension
level are arbitrarily defined:

• User Interface Component Granularity: defines the ab-
straction levels for UI elements that can be subject to adapta-
tion. Three levels are defined for these dimensions, interactor,
dialog and total. Interactors correspond to UI elements (e.g., a
combobox), dialog refers to containers (i.e., a UI elements
composition), and total level refers to CAA that impact the
complete window. Such examples are mainly applied in the
context of GUIs and that the higher the level, the higher the
impact that the end user will perceive, e.g. changing the com-
bobox height has a lower impact than replacing it (concerning
the end user perception).

• Modality: refers to the adaptations that change the modality
type for the user interaction, when the same modality is main-
tained the modality level is classified as intra-modality (e.g.
when the volume of an audio content is lowered), when it
changes from one type to another it is inter-modality (e.g. from
audio to graphic), and when multiple modality types are in-
volved and available, the adaptation is classified as multi-
modality (e.g. users can access the contents in both audio and
text simultaneously, instead of a video).

• State Recovery Granularity: refers to the application of the
adaptation towards the impact in the continuity of the end user
interaction, i.e., if the user is obliged to quit the session and re-
start a new one, the state recovery occurs at the session level, if
the task is impacted the recovery occurs at the task level, and if
just the action itself is impacted, the recovery is classified as at
the action level. For example, if the user is writing an email,
each word typed represents an action, the task is the composi-
tion of the email, and the session corresponds to accessing the
email box, logging in, and so on (thus including both task and
action).

• User Interface Deployment: represents how much adapta-
tion has been pre-defined at design-time vs. computed at
runtime, thus respectively permitting a static or a dynamic de-
ployment. CAA at design-time requires a new version of the
application to be installed, while CAA at run-time corresponds
to adaptations within the same application.

• User Feedback: refers to how the user opinion is considered,
i.e., if the system is adapted, and the user can just accept or re-
ject the adaptation after it has been performed, it can be classi-
fied as Post; if she is able to accept it (or reject) before it is ap-
plied, it is said to be Pre; evaluations refer to the possibility of
the users to provide their feedback to the system, in a numeric
(e.g., with a Likert scale) or literally, providing further details
about their feedback.

• Technological Space Coverage: refers to the technologies
adopted and used by the application, when the same technology
is maintained it is classified as intra-technological space (e.g.

Figure 4. CADS: Context-aware Design Space

from a HTML document to another), when the technology
changes between two different technological spaces, it is called
inter (e.g. from a textual document in a pdf file to a video in avi
format), and among multiple technologies, it is classified as a
multi-technological space adaptation (e.g. from a text file in
pdf to an animation with an audio file too).

• Existence of a Meta-UI: consists in abstract models to for-
mally represent and handle adaptation. Users may control, as-
sess and evolve it, including: no-meta UI, meta-UI without ne-
gotiation, meta-UI with negotiation, and plastic meta-UI.

• Autonomy Levels: refer to the level in which adaptation is
implemented: designed applications do not perform adaptation
at all, adaptable applications rely on users to trigger and per-
form adaptation, adaptive systems rely on the adaptation to be
automatically performed, and self-modifying is evolutionary
systems able to adapt their own adaptation engines.

To apply the CADS, the main axes are used to mark the
coverage level for each dimension. The extension of the marks
is defined based on what the application offers as adaptation.
This permits a graphical visualization of the coverage level that
is available. So, if the adaptation regarding the UI component
granularity occurs at the interactor level, the axis must be
marked (highlighted) until this specific level. This procedure
must be repeated for each dimension. As a result the developer
generates an applied CADS with easy identification of dimen-
sions that were better explored and the ones that could be also
considered to later on to extend or improve the application ad-
aptation. Other option to mark dimensions consists in coloring
(with stronger tones) the region of the circle under the interest
level, however this approach works well only if all the levels
correspond to the circles, and besides comparing multiple ap-
plications would not be possible with this approach.

To compare two or more applications, developers have two
choices: (i) parallel lines can be drawn in different colors, ena-
bling a straightforward comparison; or (ii) an additional model
can be used, comparing thus different application of the CADS
in parallel. Both approaches permit multiple applications to be
simultaneously compared, however for a large number of sam-
ples the second approach is preferred, not affecting the reada-
bility of the dimensions’ labels. Once the comparison of multi-
ple applications rely on color to differentiate them, it is neces-
sary to choose then different tones or styles, thus avoiding ac-
cessibility issues that may rise for example for color blind us-
ers. Figure 4 illustrates an applied CADS to analyze a given
CAA case. In this example, the UI component granularity is
classified as Total, the Modality is classified as intra, the State
recovery granularity as Session, the UI deployment as Static,
the User feedback as a numeric evaluation, the Technological
Space Coverage as intra, the Existence of a meta-UI as meta-
UI without negotiation, and the Autonomy level as Adaptable.

The CADS is versatile because it enables developers to
analyze dimensions based on their needs, i.e., they can select
which dimensions will be considered in the analysis and use
the diagram applying only dimensions of interest. A CADS
version applied considering 6 dimensions permits developers to
perform more fine-grained analysis. Besides this, the CADS is
flexible and extensible, accommodating further dimensions and
levels. The main criteria to perform this consists in assuring

that it is still possible to analyze the dimensions in a ordered
way, e.g. by defining different granularity levels, or a scale.
One example of refinement for the Autonomy Level dimension
consists in adding a Mixed-Approach level on top of Adaptive.
Mixed-Approaches occur when both the end user and the sys-
tem are able to take decisions during the adaptation process.

CADS current version results of improving previous ver-
sions; its weaknesses and strengths were analyzed and dis-
cussed during project meetings, presentations and also with in-
ternal surveys. Details about the evolution process of CADS
are described in D2.1.25 [54]. The current version maintains
strong points of preliminary versions and overcomes misunder-
standings caused by unordered dimensions. To solve this issue,
these dimensions were transferred to the CARF. Although the
CADS establishes an empirical relation of order among levels
that compose each dimension, the concepts considered are still
linked with qualitative variables, so in principle they cannot be
numerically evaluated and proportionally compared. Thus, for
each application it is necessary to justify the selection process
and its respective usage. CADS main benefit is analyzing adap-
tation in a unified and graphical view, simultaneously consider-
ing relevant dimensions and levels for a context.

IV. FRAMEWORK APPLICATIONS: CASE STUDY
This section presents how to apply TriPlet in development

phases of interactive systems. First a common case study is
described, then, three possible instantiations are detailed.

The case study is a car rental example, in which users set
specifications about the rental (e.g. period, place) and the car
(type, fuel, extra’s). This case study is merely illustrative, giv-
en that all domains can benefit of adaptation. However it was
chosen as a basic example to illustrate the usefulness and ben-
efits of TriPlet by encompassing varied context dimensions
and application aspects targeted by the adaptation. To show
multidimensional aspects of the framework, contexts varying
in user, platform and environment were considered, also adap-
tations that impact presentation, navigation, and contents.

The case studies permit to cross-validate the theoretical
concepts of the framework, assuring that it is enough compre-
hensive to cover all phases of the development life-cycle and
also different requirements.

A. First Implementation
A tablet PC running Android was chosen as the platform,

and 2 use cases were defined (Figure 5): (i) users without ex-
perience with car rental applications, medium experience with
mobile devices, in a calm and stable environment (i.e. no loud
noises, no stressful situation), and (ii) users experienced with
car rental applications, and with mobile devices, and located in

Figure 5: First implementation, context (i) and (ii) illustrating the car selection

a stressful environment with a short time to conclude the task.
Given that the platform is the same for both cases (tablet), a
meta-rule was implemented. Tablet devices have a limited
screen dimension and input controls (no mouse, or keyboard
available). First, the Android guidelines must be respected
(providing immediate feedback for user’ touches by highlight-
ing selections). Then more specific rules were defined: begin-
ners must clearly see the interaction steps (explicitly indicat-
ed), the amount of information displayed is limited (avoiding
cognitive overload) and the UI elements must be intuitive and
simpler. For calm environments, each interaction step can
provide its detailed information, the main task can be split in
many sub-tasks, and the UIs target at specific actions.

B. Second Implementation
For the second implementation the context for the car rent-

al example consider screen dimensions and resolution. The
layout is automatically and progressively adapted to fit the
contents in all space available, minimizing scrolling (Figure
6). jQuery Masonry plugin arranges UI components according
to the re-size of the browser. Each component is treated indi-
vidually, and moves to another column (or row) of the layout
to fit according to new browser size. Thresholds assure the
layout balance, avoiding unnecessary scrolling. The drawback
of this solution is that developers must organize the compo-
nents of the page in logical units. Once it is done, the re-
organization is automatic and progressive. Any screen dimen-
sion can be considered, due to fine-grained adjustments of the
layout based on the browser size. Three adaptation techniques
compose the CAA rules used: (i) resizing elements: scaling

font size, UI elements as videos and images; (ii) reorganizing
elements: changing the components horizontally and vertically
to assure a balanced layout; and (iii) mixed approach: resizing
and reorganizing. The instantiation of CAA rules conditions
vary proportionally based on the browser window size, i.e. the
bigger the window, the bigger the UI elements and amount of
columns and rows of the layout.

C. Third Implementation
The car rental example was also applied in a third scenario

of CAA based on: the user visual impairment (color blind-
ness), the platform type (mobile phone, tablet device) (Figure
7), its battery level, and user preferences (set in the system).
Six adaptation techniques were chosen and implemented (e.g.:
changing the modality and the image colors), aiming at good
usability and accessibility levels, by adapting presentation
(e.g.: menu elements), and content (images and text). The
CAA was collaboratively decided by: the user, the system and
the developer, and it was executed in the server during both:
run time and design time. The CARF (complete version) was
applied to specify this implementation example as a means of
analyzing possible options for CAA. The CARF instantiation
illustrates this example (Figure 8).

D. Application
The implementations of the case study consider different

context dimensions: visually impaired users, tablet pcs, large
screens, mobile phones, low battery level, etc. Different di-
mension levels were combined: devices (a mobile phone, a
Tablet PC), environments (relaxed vs. stressful), and users’
profile (experienced, color-blind users). For the implementa-
tions, the system specifications concerning CAA were based
on the theoretical models. After the implementation, the
CADS was applied to analyze the coverage levels of CAA of
the scenarios and the exploration of the CADS dimensions.

Figure 9 illustrates the applied CADS. The blue, black, and
gray axes represent respectively the analyses of the first, the
second and the third implementations of the car rental exam-
ples. In this CADS it is possible to notice that regarding mo-
dality, user feedback, technological space, and meta-UI all the
implementations have the same coverage level. On the other
hand, for component granularity, state recovery, and UI de-
ployment, the second and third implementations have maxi-
mum levels (i.e. total, action, and dynamic), while regarding
the autonomy level the first implementation is adaptive, the
second adaptable, and the third adopts a mixed-approach.
Thus, by the instantiation of the framework components, one

Figure 6: Second implementation, context A (horizontally aligned), B (bal-

anced layout) and C (vertically aligned)

Figure 8: Instantiated CARF for demonstration

Figure 7: Third implementation: for a smartphone and for a tablet PC

can analyze their applicability. Both CARF and CADS are
useful for stakeholders to define the CAA process and to ana-
lyze the system in terms of adaptation levels. And the CAMM
guides developers during the SDLC of a system, in special
during its early stages (definition).

V. FINAL REMARKS
Given the relevancy of providing CAA nowadays, due to

device fragmentation, heterogeneous users, and exponentially
growing applications, it is beneficial to have a framework on
which stakeholders can rely to develop their applications. In
this sense, TriPlet defines foundations for developing applica-
tions that perform CAA, i.e. by means of a computational
framework, stakeholders of such applications can find support
for all the development phases of information systems.

The contributions of this work are the result of an extensive
and systematic review and analysis of the scientific literature
regarding CAA. Such review resulted in an innovative general-
purpose computational framework to support stakeholders
during the complete SDLC of CAA, composed by three spe-
cific components: (i) a meta-model, CAMM that formalizes
and abstract the main concepts (and their relationships) for
implementing CAA; (ii) a reference framework, CARF that
provides stakeholder support to define, specify and to decide
the design for implementing CAA (CARF includes more than
150 templates composed by 11 fields describing adaptation
techniques); and (iii) a design space, CADS that supports
stakeholders in analyzing, comparing and evaluating the cov-
erage levels of adaptation for context-aware applications. To
evaluate a framework, either it is applied in different situa-
tions, i.e. considering different types of projects, industrial and
scientific domains, different application domains and different
complexity levels [11], or it is used to fit several published
works by practicing researchers to frameworks in the studies,
as propose [47]. In the case study, different contexts of use for
a common application were defined using TriPlet.

Most of the related works consider a web-based context,
although this fact can be considered as a limitation of the
work, we believe that the contributions of this framework are

generic and flexible enough in order to accommodate also ap-
plications that are not specifically web-based. Even consider-
ing an extensive list of related works and possible concepts,
not all possible approaches can be covered at once; as such
TriPlet is generic, extensible and flexible, aiming at a continu-
ous update e.g. considering adaptation techniques and its ap-
plication in heterogeneous domains and scenarios.

Working with CAA in a broad perspective is a challenge.
However, it is also the most considerable gap in this domain,
as such we highlight the importance of working with an over-
view of CAA domain to tackle its main issues. The case stud-
ies focus in heterogeneous contexts and aspects in an attempt
to effectively validate the outcomes. Analogous to the work of
[42], because the framework proposed is not hard-coded into a
system and also not technology-driven is it flexible enough to
enable attributes of an adaptation process to be modified and
as such satisfy requirements for multiple application domains.
Moreover, analogously to [45], because TriPlet establishes
mappings between several context information and adaptation
techniques, it covers adaptation needs without being specific
to a particular scenario or domain, resulting in a generic con-
text-aware method. As future works, experiments are planned
to identify and analyze application costs, compared with cur-
rent practices of development for context-aware adaptation.

ACKNOWLEDGMENT

This work was realized thanks to the support of Serenoa pro-
ject, funded by the European Union through its 7th Framework
Programme as a STREP Project: FP7-ICT-258030

REFERENCES
[1] D. Malandrino, et al.. “MIMOSA: context-aware adaptation for

ubiquitous web access,” in Pers Ubiquit Comput (2010) 14:301-320.
Springer-Verlag London.

[2] A. K. Dey, and G. D. Abowd. “Towards a better understanding of
Context and Context-Awareness” in CHI 2000. Workshop on What,
who, Where, When, and How of Context-Awareness (2000).

[3] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications,” in Human-Computer Interaction 16, 2. 2001, pp. 97-166.

[4] G. Fischer, “Context-aware systems: the 'right' information, at the 'right'
time, in the 'right' place, in the 'right' way, to the 'right' person,” in Proc.
of Int. Conf. on Adv. Vis Int. (AVI '12), ACM, USA, 2012, pp. 287-294.

[5] J. Korpi. Less Framework. At: http://lessframework.com/ (2012)
[6] V. López-Jaquero, J. Vanderdonckt, F. Montero, P. González, “Towards

an extended model of user interface adaptation: the ISATINE
framework,” In: Engineering Interactive Systems. Springer Berlin
Heidelberg, 2008. p. 374-392.

[7] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan, “A
framework for the management of context-aware workflow systems,” in:
Proceedings of the 3rd International Conference on Web Information
Systems and Technologies (WEBIST'07). 2007. p. 80-87.

[8] L. Ardissono, A. Goy and G. Petrone. ‘‘A framework for the
development of distributed, context-aware adaptive hypermedia
applications’’, in: Adaptive Hypermedia and Adaptive Web-Based
Systems. Springer Berlin Heidelberg, 2008. p. 259-262.

[9] B. Jankowska. “Architectural frameworks for automated content
adaptation to mobile devices based on open-source technologies,” PhD
Thesis. Europa Universität Viadrina Frankfurt, Germany, 2007.

[10] M. Assad, D. J. Carmichael, J. Kay and B. Kummerfeld, "PersonisAD:
Distributed, active, scrutable model framework for context-aware
services." Pervasive Comp. Springer Berlin Heidelberg, 2007. 55-72.

Figure 9: Instantiated CADS for demonstration

[11] J. E. Bardram, “"The Java Context Awareness Framework (JCAF)–a
service infrastructure and programming framework for context-aware
applications." Perv. Comp. Springer Berlin Heidelberg, 2005. 98-115.

[12] H. H. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri, “Roam, a
seamless application framework,” Journal of Systems and Software, v.
69, n. 3, p. 209-226, 2004.

[13] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J.
Vanderdonckt, “A unifying reference framework for multi-target user
interfaces,” Interacting with Computers, v. 15, n. 3, p. 289-308, 2003.

[14] G. Calvary, et al., 2002 The CAMELEON Reference Framework,
Deliverable 1.1, CAMELEON Project.

[15] J. Gómez and T. Tran. 2009, “A Survey on Approaches to Adaptation on
the Web,” Emerging Topics and Technologies in Information Systems,
p. 136-152, 2009.

[16] R. Oppermann, “Adaptively supported Adaptability,” International
Journal of Human-Computer Studies, pp. 544 – 472, 1994.

[17] A. F. Norcio and J. Stanley, “Adaptive human computer interfaces: A
literature survey and perspective,” Transactions on System, Man and
Cybernectics IEEE Transactions on, v. 19, n. 2, p. 399-408, 1989.

[18] B. Kurz, I. Popescu, and S. Gallacher, “FAÇADE – A Framework for
context-aware content adaptation and delivery,” In: Communication
Networks and Services Research, 2004. Proceedings. Second Annual
Conference on. IEEE, p. 46-55, 2004.

[19] P. Brusilovsky and D. W. Cooper, “Domain, task, and user models for
an adaptive hypermedia performance support system,” In: Proc. of the
7th int. conference on Intelligent user interfaces. ACM, p. 23-30, 2002.

[20] A. Lorenz, R. Oppermann, and A. Zimmermann. “Adaptive and
Context-Aware Systems: A Survey.” p. 22, 2000.

[21] P. Brusilovsky, “Methods and techniques of adaptive hypermedia. User
modelling and User-Adapted Interaction,” Special issue on: Adaptive
Hypertext and Hypermedia, v. 6, n. 2-3, July 1996.

[22] J. Coutaz, “Meta-User Interfaces for Ambient Spaces,” In: Proc. Of
TAMODIA 2006 K. Coninx, K. Luyten, and K.A. Schneider, LNCS
4385, p. 1–15, 2007. Springer-Verlag Berlin Heidelberg 2007 pp. 1–15.

[23] G. Calvary, O. Daassi, J. Coutaz, and A. Demeure, “Des widgets aux
comets pour la Plasticité des Systèmes Interactifs,” Revue d'Interaction
Homme-Machine, v. 6, n. 1, p. 33-53, 2005.

[24] E. Horvitz, “Principles of Mixed-Initiative User Interfaces,” In:
Proceedings of the SIGCHI conference on Human factors in computing
systems: the CHI is the limit. ACM, 1999. p. 159-166.

[25] H. Dieterich, U. Malinowski, T. Kühme, and M. Schneider-Hufschmidt,
“State of the Art in Adaptive User Interfaces,” in Adaptive User Int.:
Principles and Practice, Schneider-Hufschmidt et al., p.13-48, 1994.

[26] L. D. Acay, “Adaptive User Interfaces in Complex Supervisory Tasks,”
Master Thesis, (2004).

[27] G. D. Abowd, “Software engineering issues for ubiquitous computing,”
In: Software Engineering, 1999. Proceedings of the 1999 International
Conference on. IEEE, p. 75-84, 1999.

[28] V. Ganneau, G. Calvary, and R. Demumieux, “Métamodèle de règles
d'adaptation pour la plasticité des interfaces homme-machine,” In:
Proceedings of the 19th International Conference of the Association
Francophone d'Interaction Homme-Machine. ACM, p. 91-98, 2007.

[29] C.H. Muntean, G.M. Muntean, J. McManis, and A.I. Cristea, “Authoring
Model for Quality of Experience-aware Adaptive Hypermedia Systems”,
In: Int. Workshop on Authoring of Adaptive and Adaptable Hypermedia
(A3H 2006),2006, Dublin, Ireland.

[30] C. R. G. de Farias, M. M. Leite, C. Z. Calvi, R. M. Pessoa, and J. G.
Pereira Filho, “A MOF metamodel for the development of context-
aware mobile applications,” In: Proceedings of the 2007 ACM
symposium on Applied computing. ACM, 2007. p. 947-952.

[31] N. P. D. Koch, “Software engineering for adaptive hypermedia systems
and development process,” 2000. PhD Thesis

[32] F. Fuchs, I. Hochstatter, M. Krause, and M. Berger, “A metamodel
approach to context information,” In: Pervasive Computing and
Communications Workshops, 2005. PerCom 2005 Workshops. Third
IEEE International Conference on. IEEE, 2005. p. 8-14.

[33] Morfeo Project, (2012) Context of Use Meta model. Available online at:
http://forge.morfeo-project.org/wiki_en/index.php/Context_Of_Use_
Metamodel#Introduction.

[34] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld, “Exploring the
design space for adaptive graphical user interfaces,” In: Proc. of the
working conf. on Advanced visual interfaces. ACM, p. 201-208, 2006.

[35] W3C Multimodal Interaction Framework. Larson, J., Raman, T., and
Raggett, D. (2003) W3C Note. http://www.w3.org/TR/mmi-framework/

[36] J. Nichols, B. Myers, T. K. Harris, R. Rosenfield, M. Pignol et al..
“Generating remote control interfaces for complex appliances,” in CHI
Letters: UIST '02 Proceedings of the 15th annual ACM symposium on
User interface software and technology, Paris, France, 2002.

[37] T. Butter, M. Aleksy, P. Bostan, M. Schader, "Context-aware user
interface framework for mobile applications," in: Distributed Computing
Systems Workshops, 2007. ICDCSW'07. 27th International Conference
on. IEEE, 2007. p. 39, 22-29 June 2007 doi: 10.1109/ICDCSW.2007.31.

[38] R. Lloyd, et al. "A framework for generating adaptable hypermedia
documents." Proceedings of the fifth ACM international conference on
Multimedia. ACM, 1997.

[39] M. Perkowitz and O. Etzioni, “Towards adaptive Web sites: Conceptual
framework and case study,” in: Journal of Artificial Intelligence, v. 118,
n. 1, p. 245-275, 2000.

[40] J.M.P. Oliveira, C.T. Fernandes, “A framework for adaptive educational
hypermedia system,” In: Workshop on Apps, Products and Services of
Web-based Support Systems, IEEE/WIC, Halifax. Proc, 2003.

[41] L. Nigay and J. Coutaz, “A design space for multimodal systems:
concurrent processing and data fusion,” in: Proc. of the INTERACT'93
CHI'93 Human factors in computing systems. ACM p. 172-178 1993.

[42] C. Karagiannidis, A. Koumpis, and C. Stephanidis, “Deciding ‘what’,
‘when’, ‘why’, and ‘how’ to adapt in intelligent multimedia presentation
systems,” In: 12th European Conference on Artificial Intelligence.
Budapest, Hungary, 1996.

[43] J. Vanderdonckt, D. Grolaux, P. Van Roy, Q. Limbourg, B. Marcq and
B. Michel, “A design space for context-sensitive user interface,” in
Proceedings of IASSE, Keywords Challenges of Context-Sensitive User
Interfaces DS for Context-Sensitive UIs,” p. 207–214, 2005.

[44] L. Arhippainen, “Studying user experience: issues and problems of
mobile services – Case ADAMOS: User experience (im)possible to
catch?” Fac. of Science, Dep. of Inf. Proc, Univ. of Oulu, Finland 2009.

[45] J. C. S. Cardoso and R. José, “A framework for context-aware
adaptation,” Human Factors, pp. 118–127, 2009.

[46] A. Cristea, and L. Calvi, “The 3 layers of adaptation granularity,” in
Proceedings of the 9th International Conference on User modeling
(UM'03), P. Brusilovsky, A. Corbett, and F. de Rosis. Springer-Verlag,
Berlin, Heidelberg, p. 4-14, 2003.

[47] J. Scholtz and S. Consolvo, “Toward a framework for evaluating
ubiquitous computing applications,” Pervasive Computing, IEEE, v. 3,
n. 2, p. 82-88, 2004.

[48] K. Dittrich, S. Gatziu, and A. Geppert, “The active database
management system manifesto: a rulebase of ADBMS features,”
SIGMOD Rec. 25, 3 (September 1996), p. 40-49.

[49] Ch.-E. Dessart, V. G. Motti and J. Vanderdonckt, J, “Showing User
Interface Adaptivity by Animated Transitions” In Proc. of 3rd ACM
Symp. on Eng. Interactive Comp. Sys. EICS’2011. ACM, NY, 95-104.

[50] C. Stephanidis, A. Savidis, and D. Akoumianakis, “Towards user
interfaces for all”, in proc. of 2nd TIDE congress, pp. 167– 170, 1995.

[51] J. Rouillard, “Adaptation en contexte: contribution aux interfaces
multimodales et multicanal,” PhD Thesis, Univ. des Sciences et Techn.
Lille, France, 2008.

[52] A. Zimmermann. 2007. “Context Management and Personalization: A
Tool Suite for Context- and User-Aware Computing” Ph.D. thesis,
Fakultät für Mathematik, Informatik und Naturwissenschaften der R-W.

[53] M. Beaudouin-Lafon, “Instrumental Interaction: An Interaction Model
for Designing PostWIMP User Interfaces,” In: Proc. of the SIGCHI
conf. on Human factors in computing systems. ACM p. 446-453, 2000.

[54] V. G. Motti, (2012). Del. 2.1.2: CARF and CADS (R2).
http://files.morfeo-project.org/serenoa/public/deliverables/M18/
SERENOA_D2.1.2.pdf

